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The parameter g = (8 Iny/d1nV), which describes the volume variation of the Griineisen pa-
rameter has been calculated by the following two independent methods: (a) a macroscopic cal-
culation using a thermodynamic formula and carefully selected thermodynamic data; (b) a
microscopic calculation using a six-parameter pressure-dependent lattice-dynamical shell
model. The first method has been applied to twelve alkali halides and the second to only six
alkali halides for which experimental data on the second-order pressure dependence of the
elastic constants are available. Typical values of ¢ have been found to be equal to about 1.5.
The low-temperature limit of ¢ has been investigated by using an acoustic-continuum model.
It was found that ¢ increases sharply at low temperatures.

1. INTRODUCTION

The parameter ¢=(51ny/81nV);, which describes
the volume dependence of the Griineisen parameter
(y=VBB;/Cy) emerges frequently in discussions of
the thermoelastic properties of solids. Since no
theoretical microscopic calculations of ¢ have been
performed in the past, except for a recent work on
inert-gas crystals,1 some simple assumptions about
its numerical value have usually been made. Most
often, ¢ appears in relations which also involve the
Anderson-Griineisen parameters, which describe
the temperature dependence of the bulk moduli and
are defined by*?
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Here, Bg and By are the adiabatic and the isother-
mal bulk moduli, respectively, and g is the coeffi-
cient of volume expansion. Some formulas for 5 g,
which have been given in the past,* were based on
the assumption that ¢ <1, which does not hold for
the alkali halides, as will be shown later. Ander-
son,® on the other hand, after giving expressions for
65 and 5, which involve g, employed the more rea-

sonable approximation that ¢g=1. The assumption
that y is proportional to the volume (which implies
g=1) seems to be the most popular. It has been
used in theories of shock-wave propagation® and
also in various discussions of equations of state.®”
Another approach has been adopted by Rice® in his
discussion of the alkali metals. By making the as-
sumption that the Griineisen parameter, as well as
the adiabatic bulk modulus, is a function of volume
only, he was able to derive a simple explicit ex-
pression for the dependence of y on volume. In
terms of the parameter ¢, his relation is g=y+1.
A significant feature of the parameter q is that
it can be calculated directly from lattice-dynamical
models. A calculation of this type, based on a six-
parameter shell model, is presented in Sec. III.
The results are compared with ¢ values obtained
in Sec. II from room-temperature ultrasonic and
thermodynamic data. The low-temperature behav-
ior of g is discussed in Sec. IV.

II. EVALUATION OF ¢ FROM THERMODYNAMIC AND
ULTRASONIC DATA

The most convenient expression for ¢ in terms
of available experimental quantities is

q=1+(1+Tﬁy)6s-B’s+y+T<aﬂ) , (3)
8T )y
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where Bs=(8Bg/0P),. This equation, which is exact,
has been derived by Bassett et al.® by using stan-
dard thermodynamic identities. An equivalent ex-
pression for ¢ is

, (9InC
q=1+6T~BT_<aanV>T’ (4)

where Br= (8B1/3P),. This equation is of less prac-
tical value than Eq. (3), but will be of interest in
later discussion.

The values of g at 295 °K, which were obtained
from Eq. (3), as well as the values of closely related
quantities, are given in Table I. The ultrasonic
values of B were taken from two recent papers,
one on the sodium and potassium halides!® and an-
other on the rubidium halides.!! The values of B
and y were also taken from Refs. 10 and 11. The
last term on the right-hand side of Eq. (3) is
negligible in the high-temperature region to which
all the calculations of this section refer. This point
will be discussed below.

The values of q are typically 1.5 for the sodium
and the potassium halides. The largest values of
about 2.0 occur in the rubidium halide sequence.

An accuracy of 0.3 was assigned to the values of ¢
in Table I on the basis of the uncertainty in the in-
put data.

The values of 65 and 6, that are given in Table I
are based on the same set of thermodynamic and
ultrasonic data. These parameters, which are
closely related to ¢ through Egs. (3) and (4), have
often been estimated theoretically, starting from
various approximations and equations of state,!?~1%
with rather poor agreement among the results of
different methods. The presented values of the An-
derson-Griineisen parameters are believed to be
superior to previous compilations since they are
based on experimental data that have been carefully
selected'® ! with special emphasis on a smooth vari-
ation in each halide sequence as the halogen ion is
changed.

III. LATTICE-DYNAMICAL CALCULATION OF ¢

To derive g directly from a lattice-dynamical
model, we begin with the quasiharmonic model ex-
pression for the Griineisen parameter in terms of
the microscopic mode V’s:

y=2c;vi/ 2cy, ()

where c; is the Einstein specific heat of the ith
mode. Differentiation with respect to volume gives
the relation

0=[Zeip). - eg) | [Zem . ©

The summations over the 3N normal modes have
been evaluated by using the volume-dependent lat-
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tice-dynamical model which has been previously

employed®® to calculate ¥ from Eq. (5). For this
we have expressed all quantities appearing in Eq.
(6) in terms of the mode frequencies w; and their
first and second pressure derivatives:

9 Inw;
9 \ _ Br[p. awi> azw‘> §_T_<aw,>2]
<aan>T"w, [BT(aP L FB\ep?) "%, \ep ) I
(8)
kxZe*
Ci=(e—x—_—1-)’z ) x=hw;/RT , 9)

ac;
Iy T:y,ci(xcothx— 2).

In (10)

The lattice-dynamical shell model used has six
parameters which were determined, through well-
known relations,'® from the following six macro-
scopic quantities: the dielectric constants €, and
€., the infrared absorption frequency wyo, and the
three adiabatic elastic constants C;;, Cjz, and Cy,.
For the pressure dependence of the dielectric con-
stants, the data given by Jones!” and by Barsch
and Achar'® have been used. For the second-order
pressure dependence of the elastic constants, we
were able to find experimental data for Nal, KI,'*
KC1,%° RbCl, RbBr, and Rbl.?2! We have performed
the lattice-dynamical calculation for only these six
materials. The values for the transverse optical
frequencies wpo were taken from data by Martin.??
Their dependence on volume was estimated from a

Born-Mayer potential of the form
U=- ae?/r+ae™'? . (11)

The first volume derivative of wro or, equivalent-
ly, the v of this mode is then given by®

4a0®-0-2)-1

YT0= a((r- 2)_ o2 ’ (12)
TABLE I. Thermodynamic values of ¢ and related
quantities. All thermodynamic data are from Refs. 10
and 11.
BO™K-Y) vy B's dg 5p q
NaF 0.96 1.51 5,21 3.75 5.84 1.22
NaCl 1.19 1.61 5.30 3.87 5.97 1.40
NaBr 1.26 1.64 5.27 4.13 6.30 1,75
NaIl 1.37 1.71 5,38 4.16 6.43 1.77
KF 1.02 1.52 5.25 4,12 6.13 1,57
KCl 1.11 1.49 5,35 4.41 6.33 1,77
KBr 1.16 1.50 5.39 4.05 5.87 1.37
KI 1.23 1.53 5.48 3.98 5.86 1.26
RbF 0.94 1.40 5.57 5.05 6.83 2.07
RbCl 1.03 1.39 5.48 5,02 6.79 2.14
RbBr 1.08 1.42 5.45 4.81 6.61 1.99
RbI 1.23 1.56 5.44 4.53 6.54 1.91
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where 0=7y/p and 7, is the nearest-neighbor dis-
tance. For the volume derivative of yro, the fol-
lowing relation is obtained:

Y10 _
oInV 2/10 -

fa0®-30%-20-2)-7
a(@-2)-27

13)

The values of 0 as well as those of vy, derived
from Eq. (12) have already been given in Ref. 15.
The values of 9ypo/8 InV obtained from Eq. (13) are
given in the first column of Table II.

Finally, the pressure dependence of the unit-cell
volume must be specified and was assumed to be
given by Murnaghan’s equation of state?*

V/Vo= [1+B/T(P/BT)]-1/B'T . (14)

This equatlon is exact to the second order in pres-
sure® and is therefore adequate for our purpose of
calculating second-order pressure derivatives.

The phonon frequencies for 1000 wave vectors in
the Brillouin zone were obtained at zero pressure
and at closely spaced higher pressures. The first
and second derivatives of the individual mode fre-
quencies with respect to pressure were evaluated
numerically at P=0 and g was obtained from Eqgs.
(6)-(10). The lattice dynamical results are pre-
sented in Table II together with the corresponding
thermodynamic values of q.

The shell-model results are senstive to changes
in the values of the second pressure derivatives of
the elastic constants, which were used as input data
and which are known only to low accuracy (especial-
ly 82C,,/8P?). In view of this we regard the over-
all agreement between the thermodynamic and the
lattice-dynamical values of (8 1ny/31nV); as satis-
factory.

IV. LOW-TEMPERATURE LIMIT OF g

The magnitude of ¢ at very low temperatures is
determined by the volume dependence of the non-
dispersive acoustic-mode frequencies and may
therefore be calculated using elastic data. At low
enough temperatures, i.e., in the 7° region of the
specific heat, the summations in Egqs. (5) and (6)
may be replaced by integrations over solid angle.
The low-temperature value of the Griineisen pa-
rameter is given by?®

3 3

ve=2 | vC*2de/ 2 | Ci¥%an, (15)

i=1 i=1
where the remaining summations are over the three
acoustic modes. The element of solid angle is de-
noted by d2. The C; are the three adiabatic elastic
constants associated with the acoustic branches in
a given direction, and the y;, the corresponding
mode ¥’s, are given by

__L1, By (8C,
7iTTE" zci<aP) a6)
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Since for some of the alkali halides y becomes
very small (or even negative) at low temperatures,
g will increase sharply (or even have a singularity)
at these temperatures. We have therefore calcu-
lated the low-temperature limit of the quantity
vq= (9y/31InV),, which varies rather smoothly with
temperature.

The expression for the low-temperature limit of
(3y/2 InV); may be obtained from the volume differ-
entiation of Eq. (15). The result is

iy <372+ il >C;3/2dﬂ/

amV a4 aInV
3
2 | c#2an-34, an)
i=1

where
8y __Br (9Bg 6_'3:>
9InV _~ 2C; \ 9P /;\0P )p

3 6oL G, a0

which follows from Eq. (16).

Since the second pressure derivatives of the
elastic constants that appear in Eq. (18) are avail-
able for only six alkali halides, we have evaluated
9y,/9 InV for these six crystals only. For the elas-
tic constants and their first and second pressure
derivatives, the same (295 °K) data as in Sec. III
were used when evaluating y; and 37;/9 InV from
Egs. (16) and (18). This involves the assumption
that these mode parameters do not exhibit a strong
temperature dependence. For the C; in Eq. (17),
the low-temperature experimental values of Refs.
27-29 have been used. The summations and inte-
grations necessary to evaluate 9y;/9 InV from Eq.
(17) were performed numerically using an extended

Table II. (a) Volume dependence of Ypo calculated from
Eq. (13); (b) g values calculated from the lattice-dynam-
ical shell model; (c) ¢ values calculated from Eq. (3);

(@ (8v,/91nV) calculated from Eq. (17); (e) (8y/8InV)p
=vq from the shell model, Eqgs. (5) and (6); and (f)
T(9InY/98T)y calculated from the shell model.

(ah‘,) <Bln ) (gx ) T(Blnx)
81nV 3ln 9Inv/ p T Jy
at 295 °K
(a) (b) (c) (@ (e) ®
Lattice  Thermo-
dynam-  dynamic
ics data T=0°K T=295°K T=295°K
Nal 4.92 1.44 1.77 4,51 2.72 0.001
KCl1 4.85 1.64 1.77 5.13 2.64 0.011
KI 4.79 1.37 1.26 4.66 2.25 0.005
RbCl 4.78 1,82 2.14 9.24 2.84 0.010
RbBr 4.77 1,86 1.99 9.26 2.90 0.006
RbI 4.77 1.93 1.91 8.59 3.05 0.004
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FIG. 1. Temperature variation of (8y/81nV )y for KCl1
as calculated from shell model (full curve). Triangle
denotes the low-temperature limiting value obtained
from Eq. (17). Full circles denote values of 6g obtained
from Eq. (1) using experimental data (Refs. 28 and 30)
on 8 and Bg.
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version of the computer program described by
Schuele and Smith.%®

The low-temperature limit of 0y/9 InV), as
calculated from Eq. (17) is given in Table II, col-
umn (d), where the room-temperature values of
the same quantity are also shown for comparison,
column (). The latter are the product of (3 Iny/

8 1InV), given in column (b) and ¥ given by Eq. (5).
It can be seen that for the six alkali halides dis-
cussed, (97/9InV); increases in magnitude at low
temperatures. Since for these alkali halides y de-
creases as the temperature is lowered, this im-
plies a much sharper increase in the magnitude of
q at low temperatures.

The result that (37/9 InV); increases at low tem-
peratures can be supported by an additional calcu-
lation which will provide a link to the shell-model
calculation of Sec. III. By assuming that the v;
as well as the 8v;/9 InV do not vary with tempera-
ture, it follows from Eq. (6) that the only tempera-
ture dependence of ¢ and of (3v/91InV), arises
through the coefficients ¢;. We can therefore ob-
tain (8y/3 InV), as a function of temperature by us-
ing the room-temperature values of ¥; and d8y,/

3 InV that were calculated in Sec. III from the shell
model. The solid curve in Fig. 1 shows the cal-
culated value of (9y/8 InV), for KC1. The method
of calculation is applicable only down to moderately
low temperatures, since the number of excited
modes in our sample of the Brillouin zone becomes
too small at lower temperatures, The increase in
(9v/9 InV), as the temperature is lowered is, how-
ever, clearly noticeable. The triangle at T=0 °K
denotes the value of 9y;/3 InV calculated from

Eq. (17).
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The sharp increase in the magnitude of ¢ at low
temperatures implies that the parameter 65 will
exhibit a corresponding increase. This can be seen
from Eq. (3). The only term on the right-hand side
of this equation which is sufficiently temperature
dependent to account for the large increase in ¢
is 8g. In order to verify this conclusion we have
calculated 6 directly from Eq. (1), using experi-
mental data for the temperature dependence of the
adiabatic bulk modulus® and of the thermal expan-
sion coefficient® of KCl. &g, given by the broken
curve of Fig. 1, indeed shows the expected increase
as low temperatures are approached. A plot of
&5 vs temperature for RbI was also constructed
from available temperature data on Bg and 8. The
resulting values of 6 exhibit a much sharper in-
crease at low temperatures than in the case of KCL
The parameter 6, appearing in Eq. (4) has a tem-
perature dependence which closely resembles that
of 6.

The values of 9y;/9 InV of nondispersive acoustic
modes for crystallographic directions on the bound-
ary of the unit triangle bound by the [100], [110],
and [111] corners are shown in Fig. 2 for the case
of RbI. The mode parameters shown exhibit con-
siderable anisotropy, as do the corresponding mode
v’s.%6 For an isotropic crystal there would be no

12
(o001 - [110]
oy
a.tnV
4 —
-4 | ] 1 1 | ] 1
(0] 15 30 45
12
[100] = [111]
dy
oinV
4 _
-4 1 L 1 1 1 N | 1
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2.4nV
4F —
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920 75 60 45

Direction of Wave Propagation, Degrees

FIG. 2. Tllustration of the anisotropy of (8y;/9InV)
for the three acoustic modes in RbI.
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TABLE III. Thermodynamic values of q.
Bassett et al. Leadbetter et al. Present
(Ref. 9) (Ref. 31) work
NaF 0.73 1.22
NaCl 1.46 1.10 1.40
KC1 1.70 1.38 1.77
KBr 0.87 1.37
RbI 1.65 1.91

directional dependence and the two shear modes
would be degenerate.

V. DISCUSSION

The values of 91ny/d InV for alkali halides, as
derived from thermoelastic data, and also from a
detailed shell-model calculation, do not support
any of the simplified assumptions (e.g., ¢=0 or
g=1) which have been employed in the past. As a
rough first estimate, the value of ¢=1.5 at room
temperature is more appropriate.

To our knowledge, no lattice-dynamical calcula-
tion of g for alkali halides has been performed in
the past. Some estimates of ¢ values from thermo-
dynamic data have been reported, and these are
compared in Table III with the present thermody-
namic estimates. The values given by Leadbetter
et al.® are consistently lower than ours, and those
of Bassett et al.® are comparatively low for NaF
and RbI and show very good agreement for NaCl
and KCl.

In evaluating the room-temperature value of ¢
from Eq. (3), the term 7'(3 Iny/37T), has been ne-
glected. It can be shown to be much smaller in
magnitude than ¢. Bartels and Schuele® have given
very rough numerical estimates of (0y/9T)y at
295 °K for NaCl (0. 5%x10™* deg™) and for KC1 (- 6.5
x10™ deg™). This gives for T(d Iny/9T)y, the values
0. 01 for NaCl and - 0. 13 for KC1, which are less
than the uncertainty reported for g. Moreover, it
seems that typical values of 7'(2 Iny/3T)y, would be
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closer to the lower value reported for NaCl. This
can be shown by differentiating Eq. (5) with respect
to temperature, which gives the following relation
for the quasiharmonic value of (3y/8T)y:

(5%), = Z0n-)ee/oT)y/ e (19)

For the six alkali halides, for which lattice-dynam-
ical calculations have been performed, we have
also evaluated (37/37T), from Eq. (19) as a function
of temperature. The room-temperature values of
T(®Iny/8T), are given in the last column of Table
II. It can be seen that the quasiharmonic room-
temperature values of T'(d Iny/3T), are negligible
in comparison with ¢. The incorporation of an-
harmonic interactions which are explicitly temper-
ature dependent (and for which the quasiharmonic
model does not account) is unlikely to cause a
change in the order of magnitude of 7'(3 Iny/97)y.

At low temperatures, the values of ¢ and of the
related Anderson-Griineisen parameters increase
in magnitude for the materials considered. This
has some implications regarding the Wachtman-
Anderson relation? for the temperature dependence
of the adiabatic bulk modulus. This relation is
based on the assumption that 65 and ¥ are indepen-
dent of temperature. We find that for the alkali
halides discussed in the present paper this assump-
tion is applicable only above temperatures of the
order of 150 °K,

We have been able to study only six alkali halides
with regard to the low-temperature limit of ¢, and
the qualitative conclusions which we have drawn,
though probably applicable to most other alkali
halides, may not carry over entirely to all of them.
The magnitude changes in ¢ =9 1Iny/d1InV as the
temperature is lowered arise due to nearby equal
fractional changes in v (decrease) and in 9y/3InV
(increase). For those ionic materials for which ¥
increases as the temperature is lowered (e. g.,

LiF and MgO) the low-temperature variation of ¢
and 0¢ is entirely uncertain.
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The imaginary part of the dielectric function for excitonic transitions and different types of
critical points of a solid in a uniform electric field are presented in a closed form. The time-
dependent Schrédinger equation, with a time-dependent gauge for the applied electric field
which includes the electron-hole interaction forces is treated within the effective-mass approxi-
mation. In the weak fields and using the two-band approximations, the results can be expressed
in terms of Airy functions. The peak position of the exciton lines is found to shift to lower
energies and then move to higher energies as the electric field increases. The amplitude of
the peak decreases as the electric field increases. The electron-hole interaction can be ne-
glected in calculating the electric-field-induced change of the dielectric constant, when the
applied electric field is much larger than the effective field of the electron-hole interaction.

I. INTRODUCTION

The electro-optic or Franz-Keldysh effect has
been fruitful in identifying energies of solids at
which critical points occur.! However, the one-
electron uniform-electric-field theory can not ex-
plain the experimental results.? Some authors have
pointed out that other effects, such as nonuniformity
of the modulating electric field, 3 the Coulomb inter-
action, >* and collision broadening® should be prop-
erly included in the theory..

In order to describe the effect of nonuniform
fields, Aspnes and Frova® have proposed an averag-
ing procedure, based on an approximate solution of
Maxwell’s equations for inhomogeneous media, and
a one-electron theory and an exponentially decaying
electric field” have been used to derive the field-
induced change in dielectric function. This explains
the gross features of electroreflectance. The va-
lidity of the one-electron approximation for inter-
band transitions is based on the assumption that the
Coulomb interaction between electrons and holes
is weak. In order to provide an adequate interpre-
tation of the optical experiments, a qualitative dis-

cussion by Hamakawa et al.?'® shows that the broad-
ening of exciton lines by the electric field produces
additional peaks in the field-induced change in di-
electric function. Duke and Alferieff’ have used a
semiquantitative theory of this effect to discuss the
optical absorption in semiconductors. Recently,
Penchina, Pribram, and Sak!® and Rowe and
Aspnes!! used the Koster-Slater model, while
Ralph, * Dow and Redfield, !* and Blossey™* solved
the effective-mass equation numerically to discuss
the excitonic effects on the optical absorption of
solids. Enderlein'® used the Green’s-function ap-
proach to solve the problem, but one of his as-
sumptions made his result only valid in the limit of
zero electron-hole interaction, 101

We present here a theoretical calculation which
includes the electron-hole interaction and is based
on the assumptions that include the validity of the
effective-mass approximation and the uniform elec-
tric field.

II. MODEL OF PROBLEM
A. Wave Functions

We consider a model of an electronic Hamiltonian



